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ABSTRACT 

More and more vehicles are equipped with in-vehicle monitoring systems, and there are now a wide 

variety of these systems on the market. For the most part it serves as a feedback system for drivers and 

others by keeping tabs on things like how they drive, when they drive, and where they drive it. Many also 

give in-vehicle notifications if pre-set limits are violated (for example, hard acceleration). It is the driver's 

behaviour on the road that is being watched, such as speed or the severity of the incident (for example, 

seat belt use). When a motorist's propensity to engage in certain behaviours is tracked, the system may 

provide a risk assessment for that driver. It may also make it possible to find ways to lessen the likelihood 

of a car accident for the driver. We will investigate the use of a black box to reduce emissions in 

automobiles in this research report. 
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INTRODUCTION 

Black boxes are increasingly being used by automakers to regulate emissions. This is an efficient method 

for reducing air pollution and protecting the environment. 

Monitor fuel usage and other metrics in autos by using black boxes. Besides that, it keeps a log of the 

driver's actions. When you come to a complete stop at a red light or stop sign, the black box automatically 

shuts off the engine to prevent pollution. 

The black box is an equipment that records the data of a vehicle in order to manage the emissions of 

automobiles. Use the black box to monitor fuel consumption and other important information. 
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All driving-related data from a car is recorded in a black box. Speed, engine power, and other vehicle-

related data such as fuel consumption and acceleration are included in this information. It also keeps track 

of when and how long an engine has been operating. 

Large vehicles, such as trucks, buses, and aircraft, often use black boxes. In order to reduce emissions, the 

black box provides car owners with a comprehensive report on their fuel use and other pertinent 

information about their driving patterns. 

To keep tabs on pollution, automakers rely on black boxes. In a black box, all the information about the 

automobile is recorded, including the driving circumstances, fuel consumption, and performance of the 

engine, among other things. 

On-board and off-board sensors are used in an automobile's pollution control system. Off-board sensors, 

such as air quality monitors and weather stations, are connected to or located around the vehicle's engine, 

whereas on-board sensors are built into the vehicle itself. 

A black box is a device that's been in use for decades. But it wasn't until General Motors introduced 

pollution control technology with the black box in 1989 that manufacturers began utilising them to monitor 

vehicle performance. 

With black box technology, there are several applications, from lowering pollution to increasing safety. 

Air pollution is exacerbated by automobile emissions. Automobile manufacturers utilise black box data 

to create and upgrade their vehicles in order to cut emissions. 

Emissions from a car are controlled by a mechanism known as an automotive emission control system. 

Pollutant emissions are reduced, and this has a positive impact on the environment. There are several 

components and sensors that collect data about the engine's functioning and then utilise it to calculate how 

much fuel to inject and whether or not to activate further emission controls, such as catalytic converters 

or particle filters. 

Electronic control units (ECUs) are the most prevalent form of automated emission control systems, and 

they employ an on-board computer and sensors, such as an O2 or lambda sensor, to directly detect engine 

speed. 

Developed nations like the United States are mandating the use of black box technology in all vehicles as 

a means of ensuring the safety and security of passengers. Only the most critical data, such as vehicle 

speed, temperature, and position, is recorded by these automotive black boxes. The data gathered by a 

vehicle's black box may aid in the investigation and management of automobile accidents. Researchers 

believe that autos equipped with a Black Box might go a long way toward ensuring the safety of the 

travelling public. 
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More than a million people die each year as a result of transportation-related accidents, according to the 

WHO. The black box system drew the first step toward resolving the issue in order to respond to this 

circumstance. "Black Box" technology, which is similar to the data recorders used in planes, may now be 

an important tool in the investigation of car accidents. 

Electronic devices that capture data in the case of an accident are already standard equipment in a large 

percentage of automobiles on the road. That's why it's so critical to have backup recorders that can 

objectively document what happens in cars before, during, and after a collision. Input from witnesses, 

victims, and police reports that is often subjective. 

The correct reason of a system crash may be discovered by applying the system crash investigation. 

Bringing Black Box technology to cars is made possible in large part by the automotive electronics 

industry, often referred to as "Autotronics." The majority of this system's resources are devoted to two 

areas. Detecting and collecting data from a vehicle is the first step. The second consideration is how to 

make the data easier to understand for the user. 

The first portion requires a wide range of components and sensors. Second, a USB module was used to 

save the data using a pen drive or memory stick, and this is how the log data was collected. This system 

consists of two major components. The first is to keep track of your car's speed, temperature, time, and 

position; the second is to use the hard drive's data to figure out precisely what occurred during the incident. 

Many cities have a high rate of car accidents on a daily basis. Poor driving habits, such as speeding, 

drinking, and riding without safety gear, are to blame for the rise in this issue. According to statistics, 

more people die in vehicle accidents than in airline crashes. 

A plane's black box and a car's black box both aid in the investigation of how and why an accident 

occurred. Plane accidents, on the other hand, are far more difficult to examine. When there is no witness 

to the collision and each motorist has a different storey of what happened, they may be quite helpful. 

During an accident investigation, a digital electronics device known as a "car black box" is utilised to 

capture and preserve information about the vehicle's speed, temperature, vibration, and distance from 

objects, as well as other vehicle statuses. 

In order to save the information, an EEPROM chip is used. As a result, the police and insurance companies 

may utilise the event data recorder to figure out what actually happened in the collision. 
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Block diagrams are used in this part to illustrate how we plan to construct the project and its many 

components. This prototype incorporates sensors for further security. The RISC architecture, on which 

the ARM processors are based, has allowed for a tiny implementations and very low power consumption. 
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The circuit diagram for the Black Box, which includes the ARM7 CPU and other other components, is 

shown in this section. As you can see in this figure, all sensors are connected to the CPU. This figure was 

created using PROTEUS 8.0 software. It has a basic yet effective UI that is straightforward to use. 

This block diagram consists of 

1.2 POWER SUPPLY: 

LPC2148 uses 3.3 V power supply in the power supply. A 3.3 V supply is generated using an LM 75. 

LCD and Motor Driver IC, however, need 5V for their most fundamental functions. As a result, the AC 

mains supply is reduced to 5 volts. In order to convert 5V into 3.3V, the LM 75 is utilised. Power has been 

supplied by 

 

Transformer: To reduce a 230V AC supply to a 9V AC supply, this device is used. It also serves as a 

means of isolating the circuit from the electrical grid. 

Rectifier: “It is used to convert AC supply into DC.” 
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Filter: “It is used to reduce ripple factor of DC output from rectifier end.” 

Regulator: “It is used to regulate DC supply output.” 

 

1.3 Reset Circuit: 

Reset BUTTON: Avoiding programming problems and sometimes manually resetting the system to its 

startup mode are critical for the system.. 

 

1.4 OSCILLATOR: 

A crystal is used to generate the oscillations required by the system. 

 

1.5 ARM 7 (LPC2148): 

LPC2148 is a common integrated circuit of the ARM7 family. The RISC (reduced instruction set 

computing) architecture underpins the ARM processor. ARM's instruction set is standardised and always 

the same length. This processor has two instruction sets: ARM's 32-bit instruction set and Thumb's 16-bit 

instruction set. In a basic three-stage pipeline, the instructions are fetched, decoded, and executed in that 

order. 
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1.6 TEMPERATURE SENSOR:(LM75): 

There is a digital over temperature detector included into the LM75 temperature sensor. The LM75's I2C 

interface allows the host to query it at any moment to get the current temperature. When the programmable 

temperature limit is exceeded, the open-drain excess temperature output (OS) sinks current. A comparator 

or interrupt output may be used to control the OS. 

TOS is set at +80°C and THYST is set to +75°C during power-up, with the default values for both. Many 

thermal management and protection applications benefit from the LM75's 3.0V to 5.5V supply voltage 

range, low supply current, and I2C interface. 
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1.7 BELT SENSOR 

Belt sensors tell whether the seat belts are properly tightened. Audio Jack has been employed as a Belt 

sensor in our prototype. This is assured by verifying whether the button attached is pushed or not. When 

driving, a single button is used to determine where the seat belt is in relation to the driver's body. To 

indicate whether or not the seat belt is being worn, there is a push button on the belt buckle that indicates 

'zero' and 'one,' respectively. 

 

1.8 DOOR SENSOR (leaf switch): 

Leaf switches serve as door sensors in our prototype, allowing us to determine if the door is closed or 

open. If this leaf switch is connected, it indicates that the door is closed, and if it is disconnected, it 

indicates that the door is open, hence the logic 'one' indicates that the switch is connected. 

 

1.9 RTC (REAL TIME CLOCK): 

Our clock module's name, Real Time Clock (RTC), suggests its use. Eight pins make up the DS1307 I2C 

real time clock IC, which is used to keep track of time. All of this information is included in a single 

clock/calendar. 
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1.10 OPTOCOUPLER: 

We utilised MOC7811 as an opto coupler in our prototype to determine the speed of the wheels on the 

vehicle. You can see the IR transmitter and the photodiode placed on this opton coupler module When 

used as a wheel position sensor switch, this is what it looks like. To make it, IR LEDs and photodiodes 

are attached on opposite sides of a plastic housing. We cut the LED and photo diode circuits and then 

utilise interrupt to figure out how fast the wheel is spinning. 

 

 

1.11 RS232: 

Microcontrollers communicate with PCs using RS232, a common serial communication technology that 

uses a variety of communications cables to send data. Connecting the microcontroller to the RS232 port 

using MAX232. 
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1.12 DATA RETRIEVING FROM EEPROM: 

An EEPROM chip is a kind of computer memory that does not need a power supply to keep data stored 

in it current. Every sensor information is computed and saved in memory as the incident occurs. In order 

to understand the cause of the accident, these values are essential. The police and the insurance company 

may both benefit from the accident data that has been preserved. RS232 connection connects a black box 

to a personal computer, from whence we acquire the values or data. EEPROMs with I2C compatibility 

have a bit size of 8192 x 8 bits (M24C64) or 4096 x 8 bits (M40C96) (M24C32). A bidirectional data line 

plus a clock line make up the I2C serial interface, which is a two-wire design. A 4-bit Device Type 

Identifier code (1010) is integrated into the devices in line with the requirements of the I2C bus. 

2. BACKGROUND 

Studies reveal that in-vehicle monitoring considerably reduces dangerous behaviour, particularly among 

the most risk-prone young drivers. Nevertheless, the decrease in collision or insurance claims rates for 

young inexperienced drivers has not yet been quantified in the published research. The study shows that 

when parents see their children's driving, they are more inclined to improve their skills. Only about half 

of parents, according to some research, really read the remarks. 

Studying parents' attitudes has shown that they desire to monitor their children's driving and believe this 

technology can assist them in doing so. However, parents are worried about the impact of technology on 

their connection with their children and wish to protect their children's privacy. Data saved online might 

be hacked or stolen, and parents and young drivers are especially worried about how other organisations 

could utilise their information. 

The results of the attitudinal research indicate possible explanations for why many parents do not obtain 

input concerning their children's driving, reflecting findings from behavioural studies: As a result, many 

parents are anxious about having to address their children about their driving habits since they don't 

understand the data or how to utilise it. As a result, they are seeking advice on how to offer feedback and 

what to do if the feedback shows risky driving behaviour. 
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Young drivers may not appreciate the thought of monitoring gadgets, but they are aware that their parents 

may do so, according to research. There is a growing awareness among millennial drivers that technology 

may help them avoid making "little mistakes," slow down their inclination to drive too quickly, and resist 

social pressure. Giving children "objective" statistics rather than parents' judgments on their driving, they 

believe it will help boost their self-esteem and self-confidence. 

However, they believe that the technology does not address essential aspects such as maintaining a safe 

distance or avoiding risks, and that the feedback has to give solutions rather than merely flag concerns. 

For them, it is important to have feedback that covers the "actual" safety problems and allows them to 

explain the facts of what happened. Young drivers fear that a system that needs their parents to use the 

internet or email would be difficult for them and prohibitively expensive for them. 

In the UK, the relationship between a young driver and his or her parents may be quite different because 

of the country's tiered licencing system, which already imposes certain post-test limitations on new drivers 

when they first get behind the wheel. 

Delivering the Technology 

Retro-fitted Device 

Now, in-car monitoring does not need the installation of a costly and cumbersome telematics equipment 

(a "black box") in the vehicle. As a consequence, insurers find it more difficult to provide telematics-based 

insurance plans, and as a result, these policies tend to be reserved for young drivers who can afford to pay 

more. Insurers, young drivers, and employers may potentially be put off by the difficulties of installing 

and perhaps removing the device from the car. 

Smartphone App 

Using an app on a smartphone instead of installing a real device in a car saves money since it doesn't need 

the installation of a physical device. applications may also offer information about the driving that was 

captured by the telematics software itself. As long as the phone is registered to the driver, they may be 

used to verify their ownership, although this isn't perfect as the phone might be borrowed by another 

driver. 

As a result, using an app to offer the telematics function while the car is in motion may attract some drivers 

to use their phones for other reasons while driving. By making it plain to the motorist that they should not 

use their phone while driving and informing them that monitoring equipment would identify and report 

this if they do, this danger may be reduced to some extent. If a driver feels that their driving is of a lesser 

level than usual, they may opt to leave their phone at home or turn it on while riding as a passenger in 

someone else's vehicle so that the app may record the other driver's driving. 
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As a result, insurers will require a variety of technical solutions to prevent the phone from being used for 

other reasons and techniques to determine if the car telematics feature is being utilised just on designated 

routes or when someone else is driving. 

Original Equipment 

By either mandating it via legislation or mandating it through car manufacturers, the most dependable way 

to supply telematics technology is to have it incorporated into the vehicles as original equipment at the 

point of manufacturing (OE). Event Data Recorders (EDRs) will be required on all new automobiles and 

light trucks sold in the United States starting in September 2013, even though they are now standard 

equipment on the majority of US vehicles. For a few seconds before to, during, and after a collision, EDRs 

collect technical data about the car and its occupants, making them fundamentally distinct from the sort 

of black box being implemented by UK insurers. 

Until 2015, all new vehicles sold in Europe will be required to include E-Call (a safety feature that 

instantly broadcasts the location of the vehicle to emergency services in the event of an accident), but 

there are no present plans to mandate in-car monitoring as standard equipment in European automobiles. 

As a result, there is no necessity in the United States for drivers to collect data about their behaviour and 

performance. 

At-Work Drivers 

For the first time, businesses are using telematics to monitor their employees' vehicles, presumably mostly 

vans and trucks, but also in automobiles. Employers may utilise the collected data to develop risk-

reduction and efficiency-improving management initiatives, such as shifting routes and timetables, 

educating drivers, and, if required, instituting disciplinary measures. 

Many studies have shown that in-vehicle monitoring may assist employers and at-work drivers minimise 

their accident rates while driving for work. Some studies have indicated a 20% decrease in accidents for 

cars equipped with a monitoring system, while others have found a 38% reduction in accidents and an 

82% reduction in particular risky driving behaviours. Some fleets saw a decrease in accidents while others 

had a minor (but statistically significant) rise in accidents as a result of the changes. 

Without increasing reaction times, in-vehicle monitoring systems improved driver performance 

dramatically and consistently in trials in the United States. Without taking into consideration additional 

savings, such as fewer accidents, the monitoring device saved enough money to pay for itself. It was found 

that in-vehicle monitoring technology was underutilised in commercial truck and bus safety management 

in the United States. In addition to driver acceptability, additional hurdles included managing and 

analysing data as well as ensuring that technology was not just used for negative evaluations and punitive 

measures. 
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Telematics has been shown to reduce accidents, accident expenses, vehicle and fuel expenditures, and 

dangerous driving behaviours in a number of published case studies. This is despite the fact that these case 

studies have not been published in study papers, and the case studies revealing less favourable findings 

may not be published. 

Feedback  

In the study, the most important problem is the significance of feedback on the driving behaviour that is 

observed by the technology. – Many studies suggest that driving behaviour improves when the driver 

and/or a third party get feedback, but they give little information regarding the substance or nature of the 

input. 

For example, immediate feedback to the driver in the car and/or retrospective feedback (to the driver 

and/or a third party, such as a parent or management in the driver's firm) after the voyage has concluded 

are two common methods of providing feedback. If feedback regarding a child's driving is not being seen 

by many parents or is being utilised in an unspecific manner, additional study is required in order to 

discover how to best design, create, and provide feedback that will urge drivers and others to: 

View the comments on a regular basis. 

The feedback should be interpreted in light of this information. 

Utilize the driver's input to help them become a safer driver. 

 

DISCUSSION, ANALYSIS AND FINDINGS 

Trucks and public buses across the globe rely on Compression Ignition (CI) engines. In comparison to 

spark ignition (SI) engines, they have a higher thermal efficiency, better fuel economy, and a longer 

lifespan [1]. 

As a result, they contribute to the formation of air pollutants such as Nitrogen Oxides (NOx) and carbon 

dioxide (CO2), as well as particulate matter (Soot). In this study, we concentrate on diesel soot emissions 

since they may cause major health concerns, they have a complicated generation and oxidation process 

that makes modelling soot the most challenging of diesel engine emissions, and soot emissions restrictions 

are increasing more and stricter [1]. (RDE). Fuel characteristics and fuel mixing, for example, have been 

linked to soot emissions in prior research [3,4]. 

The maximum amount of soot that may be created by a vehicle has been steadily lowered over time. 

Newer emission guidelines limit the size and quantity of particles that may be released into the air (PN). 

In order to comply with the new Euro 6c regulations, the previous Euro 6b limitations for PN would have 
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to be decreased by a factor of 10. Intelligent engine emission control systems that depend on predictive 

soot emissions models are one possible approach for complying with tougher emission limits, such as 

RDE standards. [7] has researched several control systems for diesel engine soot reduction. Model-based 

engine control, Engine Control Unit (ECU) calibration, and fault diagnostics are all based on engine-out 

emission modelling [5,8–10]. Internal combustion engine (ICE) sophisticated machine learning (ML) 

technologies have received greater attention in recent years. Modeling, diagnostics, optimization, and 

control (ICE) of ML applications have been reviewed in [11]. 

For diesel engine combustion modelling and emission prediction, physics-based models have been more 

popular in recent years [12,13]. Because it is computationally costly [14,15], the physics-based technique 

is not suitable for model-based calibration and real-time model control, even if the comprehensive 3D 

combustion simulation model may provide physical insight. Soot, HC, and CO emissions are harder to 

estimate using physical models than NOx emissions are [2,16]. Since soot is one of the most hard to 

predict, its oxidation and production processes are still a mystery and only thorough physical models are 

substantially realistic [2]. When examining the most critical aspects of soot oxidation and generation, 

physical emission models may be an effective tool. Using physical emission models for engine 

optimization requires a large amount of computer resources. The computing time might be reduced by 

combining physical models with ML approaches [19]. 

These models cannot be utilised to regulate emissions in real time since ECUs do not have the 

computational power to do the necessary calculations. ML approaches may be trained using data-driven 

or black-box models that employ measurement data directly. These models might be as precise as 3D CFD 

physical models, but they need substantially less processing time that is sought for the application of 

model-based controllers in ECUs.. In order to carry out the black-box emission modelling using ML 

techniques such as: ANN, SVM, RT, ERT, or GPR [20], relevant approaches may be used. Compared to 

other black-box emission models, the forecast error for soot emissions is often larger [21]. The most often 

used ML approach for modelling soot emissions is ANN [20], however some research have shown that 

alternative methods have advantages. SVM and ANN were used in [22] to simulate a diesel engine's black-

box emissions using a little quantity of data. Using just a small number of experiments, it was shown that 

SVM performs better in emission modelling, particularly when it comes to soot emissions. According to 

our prior research [23], this tendency was also seen. 

Because they don't include physical models, black-box models need more calculations than full physical 

models, although they are less computationally intensive. Because of their lack of experimental data, 

black-box models are ineffective when it comes to controlling and calibrating engines and analysing the 

impacts of various engine components. Because it is difficult to gather enough experimental engine data 

to cover all operating circumstances, black-box models are often not appropriate for investigations that 

require simulating a large number of instances. In black-box models, extrapolation leads to inaccurate 

findings. Black-box models are used in gray-box models as a means of addressing these issues. Using a 
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gray-box technique, the advantages of physical modelling and supervised data-driven analysis are 

combined. Gray-box modelling combines an ML approach with a virtual engine (a 0D or 1D simulation 

model). This virtual engine's data is used to train the ML technique. A large number of parameters are 

generated in the virtual engine simulations, some of which are difficult or costly to monitor, such as in-

cylinder parameters. Gray-box modelling does not need running the actual engine, making it more suitable 

for calibration. In general, gray-box models are more accurate than black-box models when it comes to 

extrapolation and transient analysis. 

Using gray-box models, NOx, CO, HC and soot emissions were forecasted in [24]. Nox and soot emission 

modelling was done in [25] with the use of 1D-CFD and GPR ML methods with defined input feature 

sets. The study's drawback is the reliance on GPR as the sole data source for the gray-box model. In 

compared to NOx emissions, the forecast error for soot emissions was shown to be much higher. We've 

seen this pattern before [16,26]. 

For a broad spectrum of emissions, gray-box modelling was examined in [16]. Data-driven algorithms 

with preset input feature sets for varied emission levels were employed in a physical model. ANN 

approaches were utilised to simulate soot and HC emissions, whereas the GPR method was employed for 

other pollutants. According to the findings of this research, modelling soot emissions using hybrid and 

traditional emission modelling techniques is the most challenging task. Although this study employed an 

advanced ML approach (ANN), there are still other ML methods that may be used for the data-driven 

component of the research. SVM and ANN algorithms were trained using the specified characteristics for 

gray- and black-box emission modelling [26]. Another finding from this research was the difficulty in 

simulating emissions such as soot. In addition, SVM's modelling of soot emissions is more accurate than 

ANN's. Only physical information of the emissions generation and oxidation process was utilised to 

choose the fixed input feature sets for emission modelling in both of these studies [16,26]. 

Because of the gaps in our understanding of soot emissions, it is possible that critical parameters may be 

overlooked when selecting the input feature set based on physical knowledge. ML feature selection 

approaches, which were the major focus of our previous work [23], were used to pick the input feature set 

for a novel gray-box mechanism and black-box emission model for a different diesel engine. There is a 

novel platform in this study in terms of the number of applicable ML techniques (RT, SVM, BNN and 

ANN approaches are tried) and a new feature selection procedure that is different from the prior works 

[16,26]. (LASSO). Improved performance was achieved by using more complex algorithms (such as 

Bayesian and grid search) for the optimization of the hyperparameters of the machine learning techniques 

(ML). An approach for picking input characteristics, such as a systematic feature selection technique, is 

shown to increase model prediction accuracy in this research. 
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An unsupervised clustering approach may be used to classify data based on how similar it is to a given 

group. It is possible to employ clustering as a pre- or post-processing method. It is possible to categorise 

incoming data based on similarities using clustering as a pre-processing method. As a result, each group's 

data will be treated as a distinct set and examined as such. K-means clustering is a well-known ML 

technique for clustering. A clustering method known as K-means is used in [27] to classify automobiles 

into groups according on their emission output. Each cluster was tested using a variety of machine learning 

techniques, and the ones that performed best were chosen. Research suggests that a better prediction 

accuracy may be achieved by pre-clustering data. An engine's combustion events were also classified 

using this method [28]. When the output of a simulation is broken down into separate groups, clustering 

may be employed as an effective post-processing technique. A diesel engine's soot production within the 

combustion chamber was calculated using a CFD simulation [29]. The K-means clustering technique was 

then used to divide the combustor into separate zones based on the rate of soot production in the engine 

combustor. Soot formation analyses and methods for reducing soot generation in high soot regions were 

made easier by the separation of low soot areas from high soot areas. 

An algorithm called K-means is used to categorise diverse approaches and feature sets into groups 

depending on their accuracy, complexity, time-consumingness, etc. This allows for a more methodical 

selection of algorithms and feature sets. In the end, the goal is to choose the most effective methodologies 

and feature sets. To ensure that the comparison is fair, all techniques utilise the identical experimental data 

as inputs. After categorising multiple feature sets and regression techniques, a K-means clustering 

algorithm is utilised to recommend the best solutions for distinct applications. 

The following are the most significant research gaps and the paper's new contributions to the field of soot 

emissions modelling: 

There is a lack of published data on soot emissions for "full" speed-load maps from medium-duty diesel 

compression ignition engines, even though some papers have investigated the effects of various 

parameters on the emission production of diesel engines, for example, the effect of fuel properties [30]. 

In order to correctly detect soot emissions, it requires extensive calibration procedures for emission 

analyzers, which are expensive and time-consuming. Soot emission data for a 4.5 L 4-cylinder diesel 

engine's entire speed-load map is measured in this study. This dataset serves as a standard against which 

the various modelling approaches in this research may be compared. 

• The input feature set has a significant impact on the performance of ML algorithms. It is typical practise 

in emission modelling using ML approaches to choose the input feature set mostly based on physical 

information. It is possible to overlook important aspects of a situation owing to a lack of information or 

misinterpretation of physical relationships. Choosing a subset based on physical information is particularly 

challenging in gray-box emission modelling since the model produces so many characteristics. There are 

a variety of input feature sets to choose from in this study, including ML feature selection and physical 

knowledge. 
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• SVM, ANN, and GPR, together with a fixed input feature set, were previously employed in previous 

works to predict soot emissions using traditional machine learning approaches. For soot emission 

modelling, there is a paucity of systematic research that evaluate various ML approaches and feature sets. 

A total of 40 soot emission models are created in this study using eight distinct ML algorithms and five 

different feature sets. 

Previous soot emission modelling studies have not included post-processing approaches for analysing the 

data and method selection. An unsupervised machine learning algorithm is utilised to analyse and compare 

several engine soot emission models in this article. The best soot emission models are selected using two 

K-means clustering techniques that act as filters. Other engine modelling research should benefit from this 

technique as well. 

Sections are used to organise the document. The engine's physical model and experimental setup are first 

discussed. There is also a discussion of the black box and grey box versions here. The black-box and gray-

box models each have two feature sets, whereas the gray-box model has three feature sets. Lastly, the ML 

approaches that are used in pre-processing, processing, and post-processing are briefly discussed. Using 

a K-means clustering algorithm, results from various methodologies and feature sets may be compared 

and evaluated in terms of accuracy, complexity, and timeliness. The last portion of the paper discusses the 

results. 

3.1 Experimental Setup 

To gather data on soot emissions, a 4.5-liter medium-duty Cummins diesel engine was employed. Table 

1 lists the specs for the Cummins QSB4.5 160 diesel engine. Tests on this engine are being carried out at 

University of Alberta's internal combustion engine facility, and soot emission data collecting is presented 

in Figure 1. In this configuration, the engine ECU records intake air pressure, engine speed, load, injected 

fuel quantity, and fuel rail pressure. For this purpose, the Cummins INLINE6 interface and INSITE Pro 

Cummins are employed to communicate with the ECU. A Pico current clamp and a Kistler piezoelectric 

pressure sensor are used to detect the in-cylinder pressure and the command signal from the injector. 
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A Pegasor Particle Sensor (PPS-M) is used to monitor soot emissions. Figure 1b depicts the concept for 

the soot measuring system, which uses an intake heater line to send engine exhaust gas to the pre-charger. 

For soot measurement, the pre-charger is employed to prevent any charge-related issues Soot 

measurement requires a pre-charger because of the possibility of highly charged tiny particles in exhaust 

due to recent advancements in emission technology. Non-radioactive, self-heating Pegasor Pre-Charger 

with negative diffusion. Larger charged particles may be charged with known negative charges using 

Pegasor's built-in ion trap. PPS-M has a sampling rate of 100 Hz and a sensor to noise ratio of 100 dB. 

(SNR). [0.001 to 290] mg/m3 [mg/cm3] is the range of particle sizes this sensor can detect. Table 2 lists 

the primary PPS-M sensor specifications. 
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At 219 engine steady state working settings, the diesel engine was tested at all speeds and load levels. As 

shown in Figure 2, raw soot emission data is coloured according to engine speed (x-axis) and load (y-

axis). Black dots indicate experimental points. Because it is intended for fixed use, this engine's working 

conditions are rather restricted. Figure 2's 219 data points cover the vast majority of operational situations, 

as seen in the figure. 220 data points may not be enough for highway truck applications owing to the 

variety of driving cycles, since more than 900 data points have been employed in the literature for this 

application [26]. 

 

Figure 3 shows a histogram of the key characteristics of the diesel engine that are relevant to both the 

performance and the modelling of soot emissions. Figure 3b shows that the third injection pulse is active 

in 39% of the data we experimentally obtained for this diesel engine. Each cycle's total amount of injected 

fuel is shown in Figure 3a–d along with the start and end times for all injection pulses. Figure 3e illustrates 

the influence of common rail pressure on soot emission modelling. Most of the data is gathered in the 700-

1100 bar fuel rail pressure range. Figure 3f–g illustrates the air route, intake manifold pressure, and air-

fuel equivalency ratio (l). Additionally, output torque and engine speed are presented in Figure 3h–i. These 

histograms show that the data gathered from trials covers a large portion of the engine's operating 

circumstances. 
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3.2 Gray-Box and Black-Box Models 

This section describes the physical model, the black box, and the grey box. The GT-Power physics-based 

model was the initial step in building physical and gray-box models. An engine modelling programme, 

GT power, is available to the general public for purchase. The G T power programme is used to mimic 

the complicated combustion processes of the diesel engine, which includes various chemical and physical 

sub-models. Because it may be utilised with a multi-injection diesel combustion engine, DIpulse is the 

combustion model of choice. 
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The physical soot model is based on the Hiroyasu model [32]. Using just 8% of the data, the model is 

calibrated. For multi-objective Pareto optimization, the search method used in the calibration phase is 

Genetic Algorithm (GA) NSGA-III [33]. Because it can investigate a wide range of design options, GA 

is the best solution for a wide range of issues [33]. The population size and the number of generations are 

the two most important inputs for GA. Two separate general analytic models (GAs) are utilised to calibrate 

the combustion model and the soot model. Since combustion models are far more complicated and include 

more variables than soot models, there are 16 generations of the population for each algorithm, however 

there are only 10 generations for each method for soot model calibration. Figure 4 demonstrates how the 

GA-based technique is used to compute the soot model and combustion model multipliers. Soot emissions 

and in-cylinder pressure traces were taken into consideration for select optimization areas by the GAs 

based on their findings. The multipliers for the combustion model include the entertainment rate 

multiplier, the ignition delay multiplier, the premixed combustion rate multiplier, and the diffusion 

combustion rate multiplier. The soot model also includes two multipliers: one for the creation of soot, and 

another for the burning up of that soot. The best multipliers are calculated by minimising the difference 

between the experimental and simulation in-cylinder pressure trace and soot emission data. Soot emissions 

and in-cylinder pressure were calibrated individually using two distinct GAs in this example. 

The amount and timing of injection pulses have a significant impact on diesel engine soot emissions [34]. 

The Cummins diesel engine injection system has three primary pulses: Pulse I is pre-injection, Pulse II is 

the main injection, and Pulse III is post-injection, which only occurs in a few load zones. To reduce soot 

emissions, post injection plays a key role in enhancing the soot emissions burn rate. 

It is displayed in Figure 5 as a function of crank angle (CAD) the in-cylinder pressure trace for various 

load and speed situations. Among the optimization points utilised for model calibration, only examples I 

(136 [N.m] in 1200 [rpm]), IV (271-271 [N.m] in 1800 [rpm]), and VI (353 [N.m] in 2400 [rpm] are 

chosen (see Figure 4). Figure 6 shows the results of the validation tests for the crank angle at which 50% 

of the heat is emitted (CA50), NOx, intake manifold pressure, and maximum in-cylinder pressure. The 

physical model's accuracy is shown by its CA50 and maximum in-cylinder pressure errors of roughly 2 

CAD and 6 percent, respectively. 

Feature selection is the process of picking the most significant features from a large feature collection 

(FS). By reducing the size of the input feature set, FS enhances the performance of ML methods. Figure 

4 depicts the FS process in a simplified form. In order to model soot emissions, this research makes use 

of five different feature sets. A mix of physical insight and the LASSO feature selection method is 

employed for FS in this study.. Expert knowledge is used to pick the most important features in physical 

insight feature selection whereas the more systematic method of LASSO feature selection is used to select 

characteristics independent of previous knowledge about the system. 
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Only experimental data are included in the two black-box feature sets: one without any feature selection 

technique (BB), and the other using LASSO (BB + L). GB + PHYS, GB + L, and GB + PHYS + L are 

the gray-box feature sets. Only physical understanding into soot oxidation and production processes is 

used to choose data-driven characteristics in GB + PHYS. The LASSO feature selection technique is used 

to pick the parameters in GB + L. Finally, GB + PHYS + L applies the LASSO feature selection approach 

after selecting the most significant characteristics with the help of physical understanding first. Figure 4 

summarises the number of characteristics for each of the five approaches and phases. 
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A black-box and gray-box soot modelling diagram is shown in Figure 7. As can be seen, the virtual engine 

makes advantage of the experimental injection time. BMEP, intake manifold pressure, start of injection 

(SOI), fuel rail pressure, and engine speed are all included in the gray-box and black-box models, 

respectively, as illustrated in Figure 4. Models and feature sets are selected using the K-means clustering 

approach based on mistakes and timing (testing and training times). There are two different K-means 

clustering techniques used (the first filter and the second filter). In the first filter, low-quality feature sets 

and models are eliminated, while the second filter picks the optimum ML technique and feature sets in 
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terms of accuracy and training and prediction costs for diverse applications. Twelve different soot models 

have been selected, and the results and debate will be discussed in more detail below. 

 

3.3 Machine Learning Methods 

Pre-processing, modelling, and post-processing all make use of machine learning methods in this work. 

3.3.1 Pre-Processing: Feature Selection 

For both black-box and gray-box models, the LASSO feature selection approach is used to obtain the most 

effective soot prediction parameters. In order to increase the model's prediction accuracy, LASSO uses 

feature selection and regularisation. Model coefficients, which are used to forecast the outcome, are 

computed by minimising the following cost function: 

 

“where m is the number of training data points, åmi=1 jqij is the L1 regularization and l is regularization 

variable. Adding L1 regularization leads to driving the weights down to exactly zero (produces sparsity 

in the solution) and results in performing a systematic feature selection [36]. This sparsity depends on l, 

which is calculated in the cross-validation process in the current study.” 
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3.3.2 Regression Models 

“The five well-known supervised learning regression algorithms are employed: Regression Trees (RT), 

Ensemble of the Regression Trees (ERT), Gaussian Process Regression (GPR), Support Vector Machine 

(SVM), and Neural Network (NN). These are used to train both the black and gray-box soot models. 

A data-driven regression model can be generalized to fitting a parameterized model, ˆ y = hq(xi), for given 

training set Dtrain = (xi, yi) such that ˆ y converges to yi subject to given constrains. In this problem, xi is 

input feature, yi is the measured output, and q is the parameters set. The parameters set can be calculated 

by solving following optimization problem.” 

 

“where f(q) is constraints function and J(Q) is a cost function which is defined as” 

 

where “J(Q) is defined based on error ei(Q) = hq(xi)  yi to minimize prediction error while regularization 

term, L(Q), is added to regulate parameters, Q. In general, L(Q) is L1 or L2 loss function for regularization 

purpose. For LASSO regression, L1 loss function is used while in other regression methods such as Ridge, 

SVM, and ANN L2 loss function is used. L2 loss function is defined as:” 

 

“The regulatory parameter or penalized variable, l, produces a trade-off between the smoothness of the 

model and the training error tolerance minimization [36].” 
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CONCLUSION 

In the beginning, it seems that the model's outcomes are satisfactory. The oxygen buffer appears to work 

well for the model in the majority of circumstances. This may be the most difficult situation to solve for 

the model, but at higher switching amplitudes, the model seems to match both test scenarios rather well. 

To increase performance at low amplitudes, one option is to tune the model, which is obviously possible. 

Weaknesses in the model's low-amplitude behaviour mean that even while the model says we shouldn't 

emit any emissions at all, we may nevertheless leak them if we used it in a control-oriented way. However, 

the model has a built-in reset to prevent this from happening. Even though this hasn't been documented, 

it was tested in a simulated setting and returned satisfactory results. The reset function, on the other hand, 

must be calibrated to the right value for the present sensor being used. 

We can observe from the model what occurs during traditional bang bang control when just the first 

portion of the catalyst (slice one to two) is active. An improvement in control of the catalyst would suggest 

that the catalyst is underutilised. For example, the catalyst's full capacity might be used when utilising the 

control technique outlined in 4.1. Since this is a rather simple control method, it is interesting to note how 

effectively it works, despite its lack of sophistication. However, it has been widely employed since the 

introduction of three-way catalytic converters in petrol vehicles. However, despite the catalyst's 
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impressive efficiency, the model suggests that more powerful controllers may be able to substantially 

enhance the system's performance. 

As a result of the thesis, there is a universal agreement that complexity imposes limitations. Computational 

power is required to handle complicated models that have many states and responses, restricting the use 

of sophisticated control techniques and complex controllers. In 2019, sophisticated controllers would need 

a significant amount of processing power, which would restrict the model's ability to be as advanced as 

possible. For the sake of simplicity, let's say that an advanced model requires an advanced controller 

whereas a basic model does not. Because basic models can be handled by a simple controller, the usage 

of a complex controller like an optimising MPC is unnecessary and rather stupid. As a result, this thesis 

used a sophisticated model and a basic controller. This variant may be used in conjunction with more 

complex controllers in the future as car ECU performance improves. 
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